
LLNL-TR-670295

Tackling the Reproducibility Problem in
Systems Research with Declarative
Experiment Specifications

I. Jimenez, C. Maltzahn, J. Lofstead, A. Moody, K.
Mohror, R. Arpaci-Dusseau, A. Arpaci-Dusseau

May 4, 2015

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
government. Neither the United States government nor Lawrence Livermore National Security, LLC,
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States government or Lawrence Livermore National Security, LLC. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States government or
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product
endorsement purposes.

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore
National Laboratory under Contract DE-AC52-07NA27344.

Tackling the Reproducibility Problem in Systems
Research with Declarative Experiment Specifications

Ivo Jimenez, Carlos Maltzahn
UC Santa Cruz

{ivo,carlosm}@cs.ucsc.edu

Jay Lofstead
Sandia National Lab

gflofst@sandia.gov

Adam Moody, Kathryn Mohror
Lawrence Livermore National Lab
{moody20,kathryn}@llnl.gov

Remzi Arpaci-Dusseau, Andrea Arpaci-Dusseau
UW Madison

{remzi,dusseau}@cs.wisc.edu

Abstract
Validating experimental results in the field of computer sys-
tems is a challenging task, mainly due to the many changes in
software and hardware that computational environments go
through. Determining if an experiment is reproducible entails
two separate tasks: re-executing the experiment and validat-
ing the results. Existing reproducibility efforts have focused
on the former, envisioning techniques and infrastructures that
make it easier to re-execute an experiment. In this work we
focus on the latter by analyzing the validation workflow that
an experiment re-executioner goes through. We notice that
validating results is done on the basis of experiment design
and high-level goals, rather than exact quantitative metrics.
Based on this insight, we introduce a declarative format for
specifying the high-level components of an experiment as
well as describing generic, testable conditions that serve as
the basis for validation. We present a use case in the area of
storage systems to illustrate the usefulness of this approach.
We also discuss limitations and potential benefits of using this
approach in other areas of experimental systems research.

Categories and Subject Descriptors D.3.2 [Language
Classifications]: Very high-level languages; D.4.m [Op-
erating Systems]: Miscellaneous; K.7.3 [The Computing
Profession]: General

Keywords Reproducibility

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
, .

1. Introduction
A key component of the scientific method is the ability
to revisit and reproduce previous experiments. Registering
detailed information about an experiment allows scientists to
understand and validate results. Reproducibility also plays a
major role in education since a student can learn by looking
at provenance information, re-evaluate the questions that the
original experiment answered and thus “stand on the shoulder
of giants”.

Given the continuously increasing role that computers
play in the discovery of new scientific findings, the issue of
reproducibility in applied computer science has recently been
the focus of considerable attention by the scientific commu-
nity [1–3]. Coupled with this, the advent of cloud computing
offers new opportunities for experiment validation. Cloud
computing makes it easier to share code and data simplifying
collaboration for implementing experiments. While it is be-
coming easier to collaborate, the same cannot be said about
experiment validation. There is a serious lack of tools that
help researchers identify when an experiment is reproducible.
The goal of our work is to close this gap in the area of sys-
tems research and storage systems in particular. In systems
research, performance is the subject of study and we need
to look at it as a primary issue. As a consequence, repeating
an experiment with the expectation of obtaining exact same
results is unrealistic; an issue that further complicates the
reproducibility problem.

When discussing reproducibility, the terms reproducibility,
repeatability, replicability and recomputability (among many
others) are often used, sometimes interchangeably. In our
work we only employ repeatability and reproducibility. We
borrow the definitions introduced by Vitek et al. [2]:

Repeatability. The ability to re-run the exact same
experiment with the same method on the same or

1

similar system and obtain the same or very similar
result.
Reproducibility. The independent confirmation of a
scientific hypothesis through reproduction by an inde-
pendent researcher/lab. The reproductions are carried
out after a publication, based on the information in
the paper and possibly some other information, such
as data sets, published via scientific data repositories
or provided by the authors on inquiry.

While desirable, it is impractical to assume that the exact
same experiment can be run on the same or a similar system,
thus our main focus is reproducibility. Today’s computational
environments undergo a continual stream of changes that
make it difficult for an experiment to observe the same state
across multiple executions. Version-control systems (VCS)
are sometimes used to ease the recreation of an experimental
environment. Having a specific version ID for the source code
and data associated with an article on a public repository
significantly reduces the burden of recreating the means of an
experiment [4]. However, availability of the source code does
not guarantee reproducibility [3] since the code might not
compile and, even if compilable, the resulting program might
not generate the same results. Recreating an environment
that resembles the one where an experiment was originally
executed is a challenging task [5]. Virtualization technologies
can play a big role in accomplishing this [6,7]. In the end,
the re-implementation of an experiment has to be audited by
experts to confirm that they resemble the original.

The reproduction of an experiment can be seen as being
composed of (1) its execution and (2) the validation of
the results. Generally, these two tasks are conflated when
designating an experiment as reproducible. In our case, we
treat them separately and focus on the latter. At this validation
stage, the reviewer has to answer the question: “are the
re-generated results corroborating the original ones?” An
alternative but problematic validation criterion can rely on
the exact quantitative observations, that is, results validate
the original work if the exact same numerical values of
the original output are obtained. This leaves little leeway
for validation since more often than not an experiment will
get executed on environments that differ from the original.
Thus, ideally, we would like to have a way of specifying
validation criteria that are as independent as possible from
the particular implementation details, i.e., a way of testing
the validity of the original work that is agnostic to the
implementation of the experiment. A potential solution is to
have an experiment specification that describes the expected
outcome in abstract rather than absolute terms. We propose
to take experiment goals as the basis for validation and treat
quantitative observations in the context of these goals.

2. Goals, Means, and Observations
The high-level structure of an experiment can be described
as having three components: goals, means, and observations.
Two additional transient components, output data and result
visualizations, are created as part of running the experiment
and are used as a basis for observations (Figure 1).

Figure 1. High-level structure of an experiment.

Goals: An experiment is designed with a particular goal in
mind, for example, to show that under certain circumstances,
a new system or algorithm improves the state-of-the-art by
an order of magnitude.

Means: An experiment is composed of a relatively com-
plex computational environment that includes one or more
of the following: hardware, virtualization, OS, configuration,
code, data and workload. We refer to these as the means of
the experiment and use this term to denote the particulari-
ties of how the experimental environment and procedures are
carried out.

Observations: As part of the experiment execution, met-
rics are collected into an output dataset. This raw data can
optionally be summarized (e.g., with statistical descriptors)
before being displayed in a figure and described in the form
of observations made in the prose of the article. The obser-
vations made about the output data properties are the basis
on which an author proves and corroborates the hypothesis
of her work.

A declarative format provides a way to express, at a high-
level, the relationship among the goals and means of an
experiment, the raw data it produces, and the figures and
observations discussed in the article. In other words, it enables
the author to provide an experiment design description, its
means of execution, and the expected observations that
validate the author’s claims. Such a description serves two
purposes. First, a reviewer or reader with access to this
description can, on her own, validate the original work by
testing whether the original observations hold on the re-
generated output data. Secondly, the explicit specification
of these high-level elements aid an author in enhancing the
design and presentation of the experimental evaluation of
a system by forcing her to think about all aspects of the
experiment rather than just generating results for a paper.

2

3. Experiment Specification Format
An experiment specification format (ESF) allows a scientist
to explicitly and declaratively capture an experiment’s high-
level structure. An example JSON file is shown below. It
corresponds to a simplified version of the specification of
a published experiment (see Section 4). We describe each
section of the ESF next.

1 {
2 "goal_location": { "sec": "6.1", "par": 5 },
3 "goal_text": "demonstrate that Ceph scales linearly
4 with the size of the cluster",
5 "goal_category": ["proof_of_concept"],
6 "experiments":[{
7 "reference":"figure-8",
8 "name":"scalability experiment",
9 "tags":["throughput"],

10 "hardware_dependencies": [{
11 "type": "hdd",
12 "bw": "58MB/s"
13 },{
14 "type": "network",
15 "bw": "1GbE"
16 }],
17 "software_dependencies": [{
18 "type": "os",
19 "kernel": "linux 2.6.32",
20 "distro": "debian 6.0"
21 },{
22 "type": "storage",
23 "name": "ceph",
24 "version": "0.1.67"
25 }],
26 "workload": {
27 "type": "rados-benchmark",
28 "configuration": [
29 "object-size": "4mb", "time": "120s",
30 "threads": "16", "mode": "write"
31]},
32 "independent_variables": [{
33 "type": "method",
34 "values": ["raw", "ceph"],
35 "desc": "raw corresponds to hdd sequential write
36 performance, expressed in MB/s"
37 },{
38 "type": "size",
39 "values": ["2-24", 2]
40 }],
41 "dependent_variable": {
42 "type": "throughput",
43 "scale": "mb/s"
44 },
45 "statistical_functions": {
46 "functions": ["avg", "stddev"],
47 "repetitions": 10
48 },
49 "validations": [
50 "for size=*
51 expect ceph >= (raw * 0.9)"
52]}]}

3.1 Experiment Goals
The first elements in the ESF specify the experimental goal
(lines 2-8) and link it with one or more experiments that
appear in the article that serve to accomplish the goal.

3.2 Means of an Experiment
While computational systems are complex, advances in
version-control and cloud computing technologies reduce the
burden of recreating the environment on which an experiment
runs. Immutability makes it easier to fix a large majority of

the components of an experiment as well as infer and package
its dependencies [8]. For those components that cannot be
fixed to a particular state, tools can automatically obtain and
format detailed information about the state of the execution
platform, making it easier to compare between original and
re-execution environments. The challenge lies in finding,
when present, the root cause(s) of the differences in original
and reproduced results [9].

The ESF contains a section to specify the means of the
experiment. In the example, this corresponds to lines 13-36.
This is a simplified list of dependencies for this experiment,
used only to illustrate the type of information that is captured
in this section. A real example would be more comprehensive,
potentially relying on tools that obtain this information
automatically.1

3.3 Schema of Raw Data
While it is important to capture the output data, making it part
of the ESF would be cumbersome and, as has been mentioned,
exact numerical repeatability is a very limited validation
criterion. Instead, it is preferable to have a description of the
metrics being captured, i.e., the metadata of the experiment’s
output. For example, if the measurements are stored in a
CSV file, the experiment specification should include the
metadata of each column such as name, aliases, types, scales
and ranges.

The ESF has two entries for independent and dependent
variables that are used to specify the schema of the output data
(lines 37-49). The latter refers to the metric being captured
while the former corresponds to the values over which the
measurements are taken. Additionally, if statistical functions
are applied to the raw data, these should also be specified
(lines 50-53), along with the number of experiment repetitions
and summarization techniques used, if any.

3.4 Observations and Validation Clauses
We propose using a declarative language for codifying obser-
vations. Such a language provides an author with a mecha-
nism to succinctly write descriptive statements that can be
used to test for reproducibility. The simplified syntax for the
language is the following:

validation
: 'for' condition ('and' condition)*
'expect' result ('and' result)*

;
condition
: vars ('in' range) | vars ('='|'<'|'>'|'!=') value
;
result : condition ;
range
: 'between' value 'and' value | '['value(','value)*']'
;
value
: '*' | NUMBER | STRING '*' NUMBER
;
vars : STRING (',' STRING)* ;

1 https://github.com/sosreport/sos

3

The statements constructed via this language refer to el-
ements on the schema of the output data. In other words,
the schema specification that precedes the validations
section of the ESF introduces syntactic elements into the
language that provide an easy way to write validation state-
ments. For example, suppose there is an experiment that
evaluates concurrency control methods and the experiment
measures their performance while varying the number of
worker threads. The schema for such an experiment might be
the following:

{
"independent_variables": [{

"type": "method",
"values": ["baseline", "mine"]
}, {
"type": "threads",
"values": ["2", "4", "8", "16"]

}],
"dependent_variable": {

"type": "throughput",
"scale": "ops/s"

}
}

A statement for this experiment might be:

for threads > 4
expect mine = (10 * baseline)

In prose form, the above describes that when the num-
ber of worker threads goes beyond 4, mine outperforms
baseline by an order of magnitude. When re-executing
this experiment, the data should reflect this behavior in order
to validate the results.

4. Case Study
We illustrate our approach by taking a published paper and
describing the goals, means, and observations, including the
validation clauses, that define the reproducibility criteria for
one of the experiments contained in it. We take the Ceph
OSDI ’06 paper [10] and reproduce the scalability experiment
from the data performance section (6.1 on the original paper).
Results of the scalability experiment are presented in Section
6.1.3 of the Ceph paper (reprinted in Figure 2). The goal
of this experiment is to show that Ceph scales linearly with
the number of storage nodes, assuming the network switch
is never saturated. This linear scalability is the validation
criteria for this experiment and thus what we would like to
capture in the specification.

We present the original environment in Table 1 (Original
column).2 The original scalability experiment ran with 20
clients per node on 20 nodes (400 clients total) and varied
the number of object storage devices (OSDs) from 2-26 in
increments of 2. Every node was connected via a 1 GbE link
yielding a theoretical upper bound of 2GB/s when there was
enough capacity of the OSD cluster to have 20 1Gb connec-

2 The complete platform specs, as well as the means (software and workloads)
and results of the reproduced experiments are available at https://github.com/
ivotron/socc15.

Table 1: Components of original and recreated environments.

Component Original Reproduced

CPU AMD 2212 @2.0GHz Intel E5-2630 @2.3GHz
Disk drive Seagate ST3250620NS HP 6G 658071-B21
Disk BW 58 MB/s 120 MB/s (15 MB/s throttled)

Linux 2.6.9 3.13.0
Ceph commit from 2005 0.87.1

Storage 26 nodes 12 nodes
Clients 20 nodes 1 node

Network Netgear GS748T Same as original
Network BW 1400 MB/s 110 MB/s

tions or alternatively when the connection limit of the switch
was reached. The paper experiments were executed on a Net-
gear switch. This device has a capacity of approximately 14
GbE in real total traffic (from a 20 advertised), corresponding
to the 24 * 58 = 1400 MB/s combined throughput shown in
the original paper (the breaking point in Figure 2).

Figure 2. Reprinting Figure 8 from the original paper [10].
The original caption reads: “object storage device (OSD)
write performance scales linearly with the size of the OSD
cluster until the switch is saturated at 24 OSDs. CRUSH and
hash performance improves when more PGs lower variance
in OSD utilization.” The experiment sequentially writes 4
MB objects to minimize random I/O. Our main focus is on
the red solid line with circle markers. The point where linear
scalability breaks is encircled in black.

The (simplified) specification shown earlier (Section 3)
corresponds to this experiment. Without considering bottle-
necks, a reasonable validation statement should specify that
the performance of Ceph is within 90% of the raw hard-disk
bandwidth, which is what the validation clause in lines 54-57
of the example specifies. In practice, the linear scalability
behavior is ultimately limited by the capacity of the under-
lying network. We would like to express this bottleneck as
part of the specification. We can accomplish this by introduc-
ing a new clause, for example for size > 24 expect
ceph < (raw * 0.5), which specifies that when the
size of the cluster exceeds 24, the performance degrades to
less than 50% of the raw hard disk bandwidth. However, the
network switch capacity is a function of the environment and
may ultimately affect the experiment results. An alternative

4

is to extend the grammar to incorporate subclauses that qual-
ify simple validation statements. Using these, the complete
clause for this experiment would be:

for size=*
expect ceph >= (raw * 0.9)
when network not saturated

To evaluate the feasibility of this validation, we recre-
ated the original environment using the means specified in
the Recreated column of Table 1. Due to constraints in
hardware resources, we had to scale down the experiment by
reducing the number of client nodes to 1 running 16 client
threads and 12 storage nodes. This means that our network
upper bound is approximately 110 MB/s (the new network
bottleneck), corresponding to the capacity of the 1GbE link
from the client to the switch. We throttled I/O to 15 MB/s
for each storage node.3 We used this per-OSD increment as
our scaling unit. Figure 3 shows results of this scaled-down,
throttled re-execution of the scalability experiment.

Figure 3. Reproducing a scaled-down version of the original
OSDI ’06 scalability experiment. The x-axis corresponds
to the size of the cluster (in number of OSDs). The y-axis
represents normalized throughput (to meaningfully compare
against original results) with respect to the raw performance
of the hard disk drives in the cluster. The red line corresponds
to the original results and the green line to the one generated
by the re-execution of the experiment. The point where linear
scalability breaks is encircled in black.

Our experiment corroborates that Ceph scales linearly with
the number of OSDs until it saturates the available network
capacity (1GbE link of the client at 8 OSDs). As can be
noted, this is where the declarative specification stands out
since the validation is independent of the particularities of
the means of each experiment. Even though the recreated
environment is significantly different from the original, we
are able to reproduce the results by validating on the basis
of the experiment goal, schema of the output and validation
clauses expressed as relative rather than absolute throughput
measurements.

3 We throttle I/O with the purpose of slowing down the experiment. The hard
drives used for the reproduced experiment can perform at 120 MB/s which
would saturate the network link rapidly.

5. Discussion
5.1 Usability
Given that the high-level components (Section 2) abstract
a large number of experiments that people usually imple-
ment in the storage systems literature and since this is what a
researcher usually goes through anyway, creating the speci-
fication for an experiment represents little extra effort. The
exception being documenting the experiment means which,
as we mentioned before (Section 3.2), is a task that can be
automated using currently available tools.

5.2 Integration into Existing Infrastructure
Experimental platforms such as CloudLab [11] can incorpo-
rate the notion of execution so that for every experiment a
record of executions is maintained. For each execution, the
means section of the ESF can be automatically populated. Val-
idation statements can also provide another testability layer
for continuous integration (CI) systems such as Jenkins.

5.3 Codified Observations As Falsifiable Statements
Validation clauses serve to succinctly codify observations.
Given the descriptive language design, validation ranges
have to be provided for each observation so that it can
be tested. This has the implication of turning observations
into falsifiable statements [12]. These validation clauses
are conditions that should hold in order to corroborate the
conclusions of the paper. In other words, if the means of
the experiment are properly recreated, the specified behavior
should be observed.

Experiment goals (Section 3.1) set the tone in which these
falsifiable statements are treated. For an experiment that
proves a concept or design, a validation clause has more
weight than, say, an experiment that quantifies an expected
overhead. For example, for a system that claims to achieve
linear scalability, the corresponding validation clauses are
more significant than those for an experiment that shows
the overhead of a new file system implemented as a FUSE
module. In the former, a failed validation invalidates the
whole work while in the latter the failed test invalidates a
minor aspect. In other words, some experiments evaluate
a high-level claim while others refer to low-level aspects,
hence the importance of looking at experiment goals while
looking at validations; goals set the mindset of the reader or
reviewer that validates the work whenever she encounters
failed validations. This is the main motivation for having
goals as an explicit entry on the ESF.

5.4 The Validation Workflow
The ESF has the structure of a conditional statement: given
the goals and means of an experiment, the observations on the
output data should hold. Thus, if the validation statements are
false with respect to the output data of the re-execution of an
experiment, it is either because the differences between the
means of the original and reproduced experiment are signifi-

5

cantly different, or the original claims cannot be corroborated.
Thus, before one can determine the latter, one has to audit
the differences between the means of experimentation and
account for all of them (Figure 4).

Figure 4. Validation workflow.

5.5 Early Feedback
The following are quotes from authors that have kindly
worked with us by creating specifications for one or more of
their published experiments:

Author 1: Writing an experiment specification makes
you think clearly about the overall experiment design.

Author 2: The ESF provides a nice template for carry-
ing out experiments.

Author 3: This approach helps to find meaningful base-
lines. Reporting raw numbers in figures and observa-
tions makes it harder to validate results. Specifying val-
idation clauses respective to baselines and normalized
values makes it easier to report reproducible results.

In general, we have noticed that the exercise of explicitly
specifying the validation criteria creates a feedback loop in an
author’s mind that results in insightful ideas for experiment
design, baseline selection, and validation criteria. Addition-
ally, the author’s point of view is explicitly expressed. Usually,
figures contain more information than necessary to back a
claim. This might lead readers to draw other conclusions.
Lastly, every article has an implicit temporal context associ-
ated to it that the reader has to keep in mind, for example, the
bottleneck at the time that an article was published might be
in storage (e.g., hard disk drives) while at other times they
might have moved to the network instead (e.g., because of
the availability of faster storage such as SSDs). A possibility
would be to create a community-maintained knowledge base
that an author can link the paper to so that a semantic context
is available to the reader.

6. Related Work
The challenging task of evaluating experimental results in
applied computer science has been long recognized [13–15].
This and other related issues have gained substantial attention
lately in systems research [2,3,16–21], computational science
[1,18,19,22] and science in general [23–25]. Similarly, efforts
such as The Recomputation Manifesto [26] and the Software
Sustainability Institute [27] have reproducibility as a central
part of their endeavour but leave performance as a secondary
problem. In systems research, performance is the subject of
study, thus we need to look at it as a primary issue.

In [3] the authors took 601 articles published in 13 top-
tier systems research conferences and found that 32.3% of
associated experiments are repeatable (under their definition
of weak repeatability). The authors did not validate the
original results. In our case, we are interested not only in
being able to rebuild and execute binaries (repeat/reproduce
the execution) but also in validating the original claims by
testing falsifiable statements on the output of the experiment.

Krishnamurthi and Vitek [5] emphasize the importance
of repeatability and describe recent efforts by the systems
research community to encourage the submission of experi-
ment artifacts as assets associated to an article. We see our
work as complementary to these since an experiment specifi-
cation could also be part of this list of assets, making it easier
to validate a re-generated result.

The use of declarative specifications has been explored in
the context of cloud recovery testing [28], bug reproduction
[29] and cloud resource orchestration [30].

7. Conclusion and Future Work
In the words of Karl Popper: “the criterion of the scientific
status of a theory is its falsifiability, or refutability, or testabil-
ity”. By providing a way to specify the high-level components
of an experiment and validation clauses for observed metrics
we effectively incorporate falsifiability to the field of exper-
imental storage systems. We are in the process of studying
the viability of the ESF on experiments from other areas
of systems research. As part of our work, we are working
with colleagues in our field to create descriptions for already-
published experiments and analyze them to check if they
capture the appropriate validation criteria. While we envision
our findings to be applicable in the area of systems research,
we plan to evaluate its suitability on other areas of computer
science.

Acknowledgements: This work was performed under the
auspices of the U.S. Department of Energy by Lawrence
Livermore National Laboratory under Contract DE-AC52-
07NA27344. LLNL-CONF-669866. Sandia National Labora-
tories is a multi-program laboratory managed and operated by
Sandia Corporation, a wholly owned subsidiary of Lockheed
Martin Corporation, for the U.S. Department of Energy’s
National Nuclear Security Administration under contract DE-
AC04-94AL85000.

6

LLNL-TR-670295

8. References
[1] R.D. Peng, “Reproducible research in computational sci-

ence,” Science, vol. 334, Dec. 2011, pp. 1226–1227.

[2] J. Vitek and T. Kalibera, “Repeatability, reproducibility,
and rigor in systems research,” Proceedings of the ninth
ACM international conference on embedded software,
New York, NY, USA: ACM, 2011, pp. 33–38.

[3] C. Collberg, T. Proebsting, and A.M. Warren, “Repeatabil-
ity and benefaction in computer systems research,” 2015.

[4] C.T. Brown, “How we make our papers replicable,” 2014.
Available at: http://ivory.idyll.org/blog/2014-our-paper-process.
html.

[5] S. Krishnamurthi and J. Vitek, “The real software crisis:
Repeatability as a core value,” Commun. ACM, vol. 58,
Feb. 2015, pp. 34–36.

[6] B. Clark, T. Deshane, E. Dow, S. Evanchik, M. Finlayson,
J. Herne, and J.N. Matthews, “Xen and the art of re-
peated research,” Proceedings of the annual conference
on USENIX annual technical conference, Berkeley, CA,
USA: USENIX Association, 2004, pp. 47–47.

[7] I. Jimenez, C. Maltzahn, J. Lofstead, A. Moody, K. Mohror,
R.H. Arpaci-Dusseau, and A. Arpaci-Dusseau, “The role
of container technology in reproducible computer systems
research,” 2015 IEEE international conference on cloud
engineering (IC2E), Tempe, AZ: 2015.

[8] F. Chirigati, D. Shasha, and J. Freire, “ReproZip: Using
provenance to support computational reproducibility,”
Proceedings of the 5th USENIX conference on theory and
practice of provenance, Berkeley, CA, USA: USENIX
Association, 2013, pp. 1–1.

[9] I. Jimenez, C. Maltzahn, A. Moody, and K. Mohror, Redo:
Reproducibility at scale, UC Santa Cruz, 2014.

[10] S.A. Weil, S.A. Brandt, E.L. Miller, D.D.E. Long, and
C. Maltzahn, “Ceph: A scalable, high-performance dis-
tributed file system,” Proceedings of the 7th symposium
on operating systems design and implementation, Berke-
ley, CA, USA: USENIX Association, 2006, pp. 307–320.

[11] R. Ricci and E. Eide, “Introducing CloudLab: Scientific
infrastructure for advancing cloud architectures and ap-
plications,”;login: vol. 39, Dec. 2014, pp. 36–38.

[12] K. Popper, The logic of scientific discovery, New Delhi:
Routledge, 2002.

[13] J.P. Ignizio, “On the establishment of standards for
comparing algorithm performance,” Interfaces, vol. 2,
Nov. 1971, pp. 8–11.

[14] J.P. Ignizio, “Validating claims for algorithms proposed
for publication,” Operations Research, vol. 21, May. 1973,
pp. 852–854.

[15] H. Crowder, R.S. Dembo, and J.M. Mulvey, “On reporting
computational experiments with mathematical software,”
ACM Trans. Math. Softw., vol. 5, Jun. 1979, pp. 193–203.

[16] C. Dietrich and D. Lohmann, “The dataref versuchung:
Saving time through better internal repeatability,” SIGOPS
Oper. Syst. Rev., vol. 49, Jan. 2015, pp. 51–60.

[17] D.G. Feitelson, “From repeatability to reproducibility
and corroboration,” SIGOPS Oper. Syst. Rev., vol. 49, Jan.
2015, pp. 3–11.

[18] J. Freire, P. Bonnet, and D. Shasha, “Computational
reproducibility: State-of-the-art, challenges, and database
research opportunities,” Proceedings of the 2012 ACM
SIGMOD international conference on management of
data, New York, NY, USA: ACM, 2012, pp. 593–596.

[19] C. Neylon, J. Aerts, C.T. Brown, S.J. Coles, L. Hatton,
D. Lemire, K.J. Millman, P. Murray-Rust, F. Perez, N.
Saunders, N. Shah, A. Smith, G. Varoquaux, and E.
Willighagen, “Changing computational research: The
challenges ahead,” Source Code for Biology and Medicine,
vol. 7, Dec. 2012, pp. 1–2.

[20] R. LeVeqije, I. Mitchell, and V. Stodden, “Reproducible
research for scientific computing: Tools and strategies for
changing the culture,” Computing in Science Engineering,
vol. 14, Jul. 2012, pp. 13–17.

[21] V. Stodden, F. Leisch, and R.D. Peng, Implementing
reproducible research, CRC Press, 2014.

[22] D.L. Donoho, A. Maleki, I.U. Rahman, M. Shahram,
and V. Stodden, “Reproducible research in computational
harmonic analysis,” Computing in Science & Engineering,
vol. 11, Jan. 2009, pp. 8–18.

[23] J. Achenbach, “The new scientific revolution: Repro-
ducibility at last,” The Washington Post, Jan. 2015.

[24] M.B. Yaffe, “Reproducibility in science,” Science Signal-
ing, vol. 8, Apr. 2015, pp. eg5–eg5.

[25] Editorial, “Journals unite for reproducibility,” Nature, vol.
515, Nov. 2014, pp. 7–7.

[26] I.P. Gent, “The recomputation manifesto,” arXiv:1304.3674
[cs], Apr. 2013.

[27] S. Crouch, N. Hong, S. Hettrick, M. Jackson, A. Pawlik,
S. Sufi, L. Carr, D. De Roure, C. Goble, and M. Parsons,
“The software sustainability institute: Changing research
software attitudes and practices,” Computing in Science
Engineering, vol. 15, Nov. 2013, pp. 74–80.

7

[28] H.S. Gunawi, T. Do, P. Joshi, P. Alvaro, J.M. Hellerstein,
A.C. Arpaci-Dusseau, R.H. Arpaci-Dusseau, K. Sen, and
D. Borthakur, “FATE and DESTINI: A framework for
cloud recovery testing,” Proceedings of the 8th USENIX
conference on networked systems design and implemen-
tation, Berkeley, CA, USA: USENIX Association, 2011,
pp. 238–252.

[29] K. Li, P. Joshi, A. Gupta, and M.K. Ganai, “ReproLite: A
lightweight tool to quickly reproduce hard system bugs,”
Proceedings of the ACM symposium on cloud computing,
New York, NY, USA: ACM, 2014, pp. 25:1–25:13.

[30] C. Liu, B.T. Loo, and Y. Mao, “Declarative automated
cloud resource orchestration,” Proceedings of the 2Nd
ACM symposium on cloud computing, New York, NY,
USA: ACM, 2011, pp. 26:1–26:8.

8

